The realization space is [1 1 0 x1^2 0 1 1 0 x1^2 x1^2 x1^2] [0 1 1 x1^2 - x1 + 1 0 0 1 x1^2 x1^2 - x1 + 1 2*x1^2 - 2*x1 + 1 2*x1^2 - 2*x1 + 1] [0 0 0 0 1 1 1 x1^3 + x1^2 - 2*x1 + 1 -x1^2 + 2*x1 - 1 -x1^2 + 2*x1 - 1 x1^3] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x1^3 + x1^2 - 2*x1 + 1, 2*x1^2 - 2*x1 + 1, x1 - 1, 3*x1^2 - 3*x1 + 1, x1^5 + 2*x1^4 - 6*x1^3 + 7*x1^2 - 4*x1 + 1, x1^3 + 2*x1^2 - 2*x1 + 1, x1^4 + 3*x1^3 - 6*x1^2 + 4*x1 - 1, x1^2 - x1 + 1, x1, 2*x1^5 + x1^4 - 7*x1^3 + 8*x1^2 - 4*x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 1, 3*x1^2 - 4*x1 + 2, x1^5 + x1^4 - 4*x1^3 + 5*x1^2 - 3*x1 + 1, x1^5 + 2*x1^4 - 4*x1^3 + 5*x1^2 - 3*x1 + 1, x1^4 - 2*x1^3 + 4*x1^2 - 3*x1 + 1, 2*x1^2 - 3*x1 + 2, x1^2 + x1 - 1, x1^5 + x1^4 - 2*x1^3 + 4*x1^2 - 3*x1 + 1]